(3/11)=3x^2

Simple and best practice solution for (3/11)=3x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/11)=3x^2 equation:



(3/11)=3x^2
We move all terms to the left:
(3/11)-(3x^2)=0
We add all the numbers together, and all the variables
-3x^2+(+3/11)=0
We get rid of parentheses
-3x^2+3/11=0
We multiply all the terms by the denominator
-3x^2*11+3=0
Wy multiply elements
-33x^2+3=0
a = -33; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-33)·3
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11}}{2*-33}=\frac{0-6\sqrt{11}}{-66} =-\frac{6\sqrt{11}}{-66} =-\frac{\sqrt{11}}{-11} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11}}{2*-33}=\frac{0+6\sqrt{11}}{-66} =\frac{6\sqrt{11}}{-66} =\frac{\sqrt{11}}{-11} $

See similar equations:

| 15x=10(x-1) | | 8/3(8/3p+1/2)=-40/27-4/3p | | 2/9x+2=0 | | 8=-1.8(-2)+b | | 2^k=64 | | -0.07p-0.6=5 | | 30=-(5/7)y | | X²+5x+6=0 | | 3(9-x)=3 | | 16t-9t=99 | | 5k+28=3 | | 3(x+3)-2(3x-7)=17 | | -(3v/5)=-15 | | 2x-4(x-3)=-8+5x+6 | | 3=5+a | | 8/3(8/3p+1/2)=-40/27-11/3p | | X-2/5-2=x-9/4 | | 14d+9d=77 | | (7/2)v=-21 | | 5/9z=-10 | | |n+2|=8 | | 3/4x-5/3x=5/6x-13 | | 6x+5=20x-2 | | 2(-4x+5)=5(2x) | | 4x(x+8)=3 | | (16/9)=-8u | | -2(-5-4a)=-1-3a | | 6x-2=4×+10 | | {5x+13}/9=22 | | 5-4r=6+2r | | u–-11=13 | | 3(4x+12)=18-6x |

Equations solver categories